Linear algebra is useful to solve some problems. But, In the real, There are many nonlinear problems. To solve this kind of problem, we can assume a nonlinear problem like linear problem by using some methods.
What is Linear algebra?
Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces. It includes the study of lines, planes, and subspaces, but is also concerned with properties common to all vector spaces. - [Wikipedia][1]
A Linear equation in the variable \(x_1,\ldots,x_n\) is an equation that can be written in the form
Fields using linear algebra
-
analytic geometry
-
engineering, physics
-
natural sciences
-
computer science
-
computer animation
-
advanced facial recognition algorithms and the social sciences (particularly in economics)
So, I’ll share theorem and definition of Linear algebra.
I’m studying from the book [^book]
Linear and nonlinear inverse problem
Norm
Norm can be called as a distance like Manhattan
, Euclidean
It can map nonlinear function to linear function.
Norm
is mapping: $\Vert \cdot \Vert : V \to R^N = [0,\infty)$
- $\Vert f\Vert=0$ if and only if $f=0$ (zero elements)
- $\Vert\alpha f\Vert=\Vert\alpha\Vert\ \Vert f \Vert$
- $\Vert f+g \Vert \le \Vert f \Vert + \Vert g\Vert$
Different Norms
\[||V||_2 = \sqrt{v_1^2+v_2^2+v_3^2} : Euclidean\ Norm\]Normed space
If $f,g$ belongs to a normed space V then should lead
- $f+g \in V$
- $\alpha \cdot f \in V, \forall \alpha \in R^n $
- $f+g= g+f, h+(f+g) = (h+f)+g$
Normed space is Vector space $\oplus$ Norm define over it.
Finite Dimensional normed spaces
The set ${\phi_1, \phi_2,…,\phi_n} :=S$ is a spanning set for the space V if any element $f \in V $ can be written in form $f=\sum_{i=1}^m\alpha_i\phi_i,\alpha_i \in n $.
$\phi_i$ are called Spanning functions
Inner product
We define the Inner product
, $\langle \cdot,\cdot \rangle :V\times V \to R$ a mapping.
Inner product
has properties.
- $\langle f,g \rangle=\langle g,f \rangle$
- $\langle \alpha f, g \rangle = \alpha \langle f, g\rangle$
- $\langle f+g,h \rangle = \langle f,h \rangle + \langle g, h \rangle$
- $\langle f, f \rangle \gt 0, \langle f, f \rangle = 0 \mathtt{\ if\ and\ only\ if} f=0$
Another useful equation in inner product is $cos\theta = \frac{\langle x, y \rangle}{\Vert x \Vert \Vert y \Vert}$
Orthogonality
Orthogonal projections
orthogonal projection
of vector $f$ onto the subspace $V$ is $\Vert f - g \Vert$ is minimized.
Assuming the case of $n=3$,
\[{c_1^2 \langle \phi_1, \phi_1 \rangle} + c_2^2 \langle \phi_2, \phi_2 \rangle + c_3^2 \langle \phi_2, \phi_2 \rangle\\ + 2c_1c_2 \langle \phi_1, \phi_2 \rangle + 2c_1c_3 \langle \phi_1, \phi_3 \rangle + 2c_2c_3 \langle \phi_2, \phi_3 \rangle \\ - 2c_1 \langle \phi_1, g \rangle - 2c_2 \langle \phi_2, g \rangle - 2c_3 \langle \phi_3, g \rangle +\langle g, g \rangle\\\]$S(c_1,c_2,c_3)$ We have to find the values to minimmize $\Vert f - g \Vert$.
\[\frac{d S}{d c_1} := 2c_1 {\langle \phi_1, \phi_1 \rangle} + 2c_2 {\langle \phi_1, \phi_2 \rangle} + 2c_3{\langle \phi_1, \phi_3 \rangle} - 2 {\langle \phi_1, g \rangle}\\ = 2\sum_{i=1}^3c_i\langle \phi_1, \phi_i \rangle -2 {\langle \phi_1, g \rangle} = 0\\ \frac{d S}{d c_2} := 2c_1 {\langle \phi_2, \phi_1 \rangle} + 2c_2 {\langle \phi_2, \phi_2 \rangle} + 2c_3{\langle \phi_2, \phi_3 \rangle} - 2 {\langle \phi_2, g \rangle}\\ = 2\sum_{i=1}^3c_i\langle \phi_2, \phi_i \rangle -2 {\langle \phi_2, g \rangle} = 0\\ \frac{d S}{d c_3} := 2c_1 {\langle \phi_3, \phi_1 \rangle} + 2c_2 {\langle \phi_3, \phi_2 \rangle} + 2c_3{\langle \phi_3, \phi_3 \rangle} - 2 {\langle \phi_3, g \rangle}\\ = 2\sum_{i=1}^3c_i\langle \phi_3, \phi_i \rangle -2 {\langle \phi_3, g \rangle} = 0\\ \left\{ \begin{array}{c} \sum_{i=1}^3 c_i\langle \phi_1, \phi_i \rangle = {\langle \phi_1, g \rangle} \\ \sum_{i=1}^3 c_i\langle \phi_2, \phi_i \rangle = {\langle \phi_2, g \rangle} \\ \sum_{i=1}^3 c_i\langle \phi_3, \phi_i \rangle = {\langle \phi_3, g \rangle} \end{array} \right.\]by expression using matrix,
\[\begin{bmatrix} {\langle \phi_1, \phi_1 \rangle} & {\langle \phi_1, \phi_2 \rangle} & {\langle \phi_1, \phi_3 \rangle} \\ {\langle \phi_2, \phi_1\rangle} & {\langle \phi_2, \phi_2 \rangle} & {\langle \phi_2, \phi_3 \rangle} \\ {\langle \phi_3, \phi_1 \rangle} & {\langle \phi_3, \phi_2 \rangle} & {\langle \phi_3, \phi_3 \rangle} \\ \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \end{bmatrix} = \begin{bmatrix} {\langle \phi_1, g \rangle} \\ {\langle \phi_2, g \rangle} \\ {\langle \phi_3, g \rangle} \\ \end{bmatrix}\]Orthonormalization
: $V_i = \frac{1}{\Vert\phi_i\Vert}\cdot\phi_i$
Orthonormal basis
We say we have orthogonal basis
for the space $V$ if $V = span\ { \phi_1,\dots,\phi_n} \ where\ \Vert \phi_i \Vert = 1$ and $\Vert \phi_i, \phi_j \Vert = \begin{cases}1 & \text{if $i=j$} \ 0 & \text{if $i\neq j$}\end{cases} \forall i,j=1,\dots,n$